
Component Lists:
TCollection And TCollectionItem
by Xavier Pacheco

You often need to maintain a
collection of items, such as

data types, objects, or compo-
nents, which are manipulated in
Delphi’s design time environment.
The Lines property of a TMemo is one
example, it’s a TStrings object type
which encapsulates a list of strings.
Various management tasks like
adding, removing and streaming of
the strings are handled by the
TStrings class itself.

In many cases you might want to
maintain a collection of items that
aren’t already encapsulated by an
existing component which the user
can manipulate at design time.
There are a few approaches you
can take to accomplish this. For
example, you could create a com-
ponent which encapsulates your
collection and also performs the
management functions, like the
TStrings class. Another approach
might be to override the default
streaming mechanism of an owner
component to make it aware of the
collection of items. You’ll have to
code the management functions as
part of the owner component.
Although the two previously
mentioned approaches are suit-
able, Delphi 2 offers a cleaner ap-
proach to maintaining collections
of items with its TCollection and
TCollectionItem classes.

The TCollection class is used to
store a list of TCollectionItem
objects. What’s nice about
TCollection is that it already knows
how to perform the management
functions on its collection of
TCollectionItems. TCollection and
TCollectionItem are not compo-
nents, but rather descendants of
TPersistent and therefore have
built-in streaming mechanisms.

In order to use these classes to
maintain a collection of items, you
must create a descendant of each.
The TCollectionItem descendant
should encapsulate an element in

the collection. The TCollection de-
scendant will be made aware of the
TCollectionItem descendant and
can be made into a property of an
existing component. An example of
where you’ll see these objects used
is the TStatusBar component.

TStatusBar contains a property
Panels of type TStatusPanels, which
is a TCollection descendant.
TStatusPanels is defined so that
it stores a collection of the
TCollectionItem descendant class
TStatusPanel which represents a
distinct panel on the status bar.
Other places where descendant
TCollection classes are used as
properties are THeaderControl.
Sections, TListView.Items and
TDBGrid.Columns.

The example in this article will
illustrate how you might use the
TCollection and TCollectionItem
classes to maintain a list of pie
wedges for a pie graph component.
The component, TPieGraphic, is not
complex and probably not very
useful as it stands. The intention is
to focus on the technique of using
the classes and not on the example
itself.

The TPieGraphic component is a
descendant of a TGraphicControl.
TPieGraphic’s Paint method draws
the various pie wedges based on
their value and color as specified
by the user of the component. The
component user can add, edit,
remove and modify wedges both at
design-time and run-time. The
design-time interface is provided
by the PiePieces property.
PiePieces is a TCollection descen-
dant which maintains a collection
of TPieWedge objects. TPieWedge is a
TCollectionItem descendant.

To create the TPieGraphic com-
ponent, I took the following steps.
Firstly, I defined TPieWedge, the
TCollectionItem descendant which
encapsulates a distinctive pie
wedge. Then I defined TPiePieces,

the TCollection descendant which
maintains the collection of
TPieWedges. Next I defined
TPieGraphic, the TGraphicControl
descendant which has a TPiePieces
property, PiePieces, and paints
the various pie wedges held by
PiePieces. Lastly, I designed a prop-
erty editor to allow the component
user to add/remove items from the
property TPieGraphic.PiePieces at
design-time.

The remainder of this article will
go through these steps. Listing 1 is
the source code for the TPieWedge,
TPiePieces and TPieGraphic
classes.

Defining The
TCollectionItem Descendant
Before creating my descendant of
TCollectionItem, I had to determine
what data was necessary to paint a
pie wedge representing a certain
value. More importantly, I had to
determine what data needed to be
stored at design time so that when
a form containing my component
was reloaded, the pie wedges cre-
ated at design-time would still be
intact. The data needing to be
stored (or streamed) is a value
which the pie wedge represents
and a color with which to paint the
pie wedge. Additionally, I need to
keep a TBrush object for drawing
purposes, which need not be
stored.

I gave TPieWedge three private
fields: FWedgeValue to hold an inte-
ger value for the given wedge,
FColor to hold the pie wedge’s
color and FBrush to be used for
drawing. I also published the prop-
erties WedgeValue and Color which
refer to the private fields
FWedgeValue and FColor respec-
tively. This is an important step,

➤ Facing page: Listing 1
For additional commenting
see file PIEGRAF.PAS on the disk

40 The Delphi Magazine Issue 10

unit piegraf;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics, Controls,
 Forms, Dialogs;
type
 TPieGraphic = class;
 TPieWedge = class(TCollectionItem)
 private
 FWedgeValue: Integer; // Value this wedge represents
 FColor: TColor; // Color to paint the wedge
 FBrush: TBrush; // Brush object to use
 public
 constructor Create(Collection: TCollection); override;
 destructor Destroy; override;
 procedure Assign(Source: TPersistent); override;
 procedure SetWedgeValue(Value: Integer);
 procedure SetColor(Value: TColor);
 published
 { published properties will be streamed automatically }
 property WedgeValue: Integer
 read FWedgeValue write SetWedgeValue;
 property Color: TColor read FColor write SetColor;
 end;
 TPiePieces = class(TCollection)
 private
 FPieGraphic: TPieGraphic; // Owner component of property
 FTotal: Integer; // Total of all WedgeValues
 function GetItem(Index: Integer): TPieWedge;
 procedure SetItem(Index: Integer; Value: TPieWedge);
 protected
 procedure Update(Item: TCollectionItem); override;
 public
 constructor Create(PieGraphic: TPieGraphic);
 function Add: TPieWedge;
 procedure UpdatePiePieces;
 function AddPiece(Value: Integer; wColor: TColor):
 TPieWedge;
 property Items[Index: Integer]: TPieWedge
 read GetItem write SetItem; default;
 property Total: Integer read FTotal;
 end;
 TPieGraphic = class(TGraphicControl)
 private
 FPiePieces: TPiePieces;
 protected
 procedure SetPiePieces(Value: TPiePieces);
 public
 procedure Paint; override;
 constructor Create(AOwner: TComponent); override;
 destructor Destroy; override;
 procedure AddPiece(Value: Integer; wColor: TColor);
 published
 property PiePieces: TPiePieces
 read FPiePieces write SetPiePieces;
 end;
procedure Register;
implementation
uses DsgnIntf, Piegrpe;
constructor TPieWedge.Create(Collection: TCollection);
begin
 inherited Create(Collection);
 FBrush := TBrush.Create;
end;
destructor TPieWedge.Destroy;
begin
 FBrush.Free;
 inherited Destroy;
end;
procedure TPieWedge.Assign(Source: TPersistent);
begin
 if Source is TPieWedge then begin
 WedgeValue := TPieWedge(Source).WedgeValue;
 Color := TPieWedge(Source).Color;
 Exit;
 end;
 inherited Assign(Source);
end;
procedure TPieWedge.SetWedgeValue(Value: Integer);
begin
 FWedgeValue := Value;
 Changed(False);
end;
procedure TPieWedge.SetColor(Value: TColor);
begin
 FColor := Value;
 FBrush.Color := Value;
 Changed(False);
end;
{ TPiePieces }
constructor TPiePieces.Create(PieGraphic: TPieGraphic);
begin
 inherited Create(TPieWedge);
 FPieGraphic := PieGraphic;
end;
function TPiePieces.GetItem(Index: Integer): TPieWedge;
begin
 Result := TPieWedge(inherited GetItem(Index));
end;

procedure TPiePieces.SetItem(Index: Integer;
 Value: TPieWedge);
begin
 inherited SetItem(Index, Value);
end;
function TPiePieces.Add: TPieWedge;
begin
 Result := TPieWedge(inherited Add);
end;
function TPiePieces.AddPiece(Value: Integer;
 wColor: TColor): TPieWedge;
begin
 Result := Add;
 Result.WedgeValue := Value;
 Result.Color := wColor;
end;
procedure TPiePieces.UpdatePiePieces;
begin
 FPieGraphic.Refresh;
end;
procedure TPiePieces.Update(Item: TCollectionItem);
var
 i: integer;
begin
 FTotal := 0;
 for i := 0 to Count - 1 do
 FTotal := FTotal + Items[i].WedgeValue;
 if Item <> nil then
 UpdatePiePieces;
end;
{ TPieGraphic }
constructor TPieGraphic.Create(AOwner: TComponent);
begin
 inherited Create(AOwner);
 FPiePieces := TPiePieces.Create(self);
 Width := 200;
 Height := 200;
end;
destructor TPieGraphic.Destroy;
begin
 FPiePieces.Free;
 inherited Destroy;
end;
procedure TPieGraphic.AddPiece(Value: Integer;
 wColor: TColor);
begin
 FPiePieces.AddPiece(Value, wColor);
 Refresh;
end;
procedure TPieGraphic.SetPiePieces(Value: TPiePieces);
begin
 FPiePieces.Assign(Value);
end;
procedure TPieGraphic.Paint;
var
 StartA, EndA: Integer;
 midX, midY, stX, stY, endX, endY: Integer;
 sX, sY, eX, eY: double;
 i: integer;
begin
 if FPiePieces.FTotal <> 0 then begin
 StartA := 0;
 for i := 0 to FPiePieces.Count - 1 do begin
 if i = FPiePieces.Count - 1 then
 EndA := 0
 else begin
 EndA := StartA +
 Trunc((Integer(FPiePieces.Items[i].FWedgeValue) /
 FPiePieces.FTotal) * 360);
 if EndA = StartA then EndA := StartA+1;
 end;
 midX := Width div 2;
 midY := Height div 2;
 sX := Cos((StartA / 180.0) * pi);
 sY := Sin((StartA / 180.0) * pi);
 eX := Cos((EndA / 180.0) * pi);
 eY := Sin((EndA / 180.0) * pi);
 stX := Round(sX * 100);
 stY := Round(sY * 100);
 endX := Round(eX * 100);
 endY := Round(eY * 100);
 with Canvas do begin
 { Copy the brush from the TPieWedge to this Canvas }
 Brush := FPiePieces.Items[i].FBrush;
 Pie(0,0, Width,Height, midX + stX, midY - stY,
 midX + endX, midY - endY);
 end;
 StartA := EndA;
 end;
 end;
end;
procedure Register;
begin
 RegisterComponents(’Test’, [TPieGraphic]);
 RegisterPropertyEditor(TypeInfo(TPiePieces), TPieGraphic,
 ’PiePieces’, TPiePiecesProperty);
end;
end.

June 1996 The Delphi Magazine 41

because whatever gets published
is automatically streamed when
the form using the TPieGraphic
component is saved. This is what is
so nice about using the
TCollectionItem to wrap elements
of the collection. You just tell the
TCollectionItem what to save by
making it a published property.

The TPieWedge.Create construc-
tor takes a TCollection as a parame-
ter. This parameter gets assigned
to the TPieWedge.Collection prop-
erty which is inherited from the
TCollectionItem class. This allows
TCollectionItem descendants to re-
fer to the TCollection with which
they are associated. In addition to
calling the inherited constructor,
TPieWedge’s Create constructor also
instantiates the FBrush object,
which is freed in TPieWedge.
Destroy.

It is necessary to override the
Assign method which is actually
inherited from TPersistent.
TPieWedge.Assign is responsible for
copying the TPieWedge passed in as
a parameter. You will notice in
Listing 1 that TPieWedge.Assign first
ensures that a TPieWedge is passed
in and then copies its fields. Notice
that this method also assigns these
values to its properties rather then
to its private field members. The
reason for this is to invoke any
side-effects that occur in the prop-
erty write access methods for
those properties.

The TPieWedge.SetWedgeValue
and TPieWedge.SetColor methods
are the access methods for the
WedgeValue and WedgeColor proper-
ties. These methods do as ex-
pected in assigning the specified
values to the appropriate private
fields. They also both call the
TCollectionItem.Changed method.
This method causes the associated
TCollection object to call its Update
method, which is an abstract
method that must be overriden to
perform any necessary logic
whenever a change is made to a
TCollectionItem. You will see later
how I overrode this method to
maintain a total of the TPieWedge
values and to re-draw the
TPieGraphic to reflect any changes.

You can see that creating the
TCollectionItem descendant is

actually very simple. Its main
purpose is to specify which data of
a collection’s element to store by
making that data a published prop-
erty. The rest is just setting up the
various access methods for those
particular properties and over-
riding a few necessary methods.

One general point I should make
about encapsulating a component
or object with a TCollectionItem is
that you shouldn’t try to stream
the component itself. Rather, you
simply publish the necessary data
required to create the component
in the state that it was saved. The
TCollectionItem should create an
instance of this component and use
the streamed data to restore the
component’s state.

Defining The
TCollection Descendant
There’s a bit more to do to
the TCollection descendant type,
TPiePieces, to make it aware of the
TPieWedge. First, I need to maintain
a link to the component of which
TPiePieces will be a property. I
used the FPieGraphic field for this
purpose, which is of type
TPieGraphic. Although I haven’t yet
defined TPieGraphic, I placed a
forward declaration so that I could
use it in the TPiePieces definition.
Also, I needed to maintain a total of
the TPieWedge values and I use
FTotal for this purpose.

The TPiePieces.Create construc-
tor takes a TPieGraphic parameter
and assigns it to FPieGraphic. It
does this after calling the inherited
TCollection.Create constructor.
Notice that the TPiePieces.Create
constructor does not override the
TCollection.Create constructor
but rather creates its own con-
structor and just calls the inherited
one. TCollection.Create takes the
type of the TCollectionItem descen-
dant with which it is associated as
a parameter. TCollection uses this
information internally in creating
and adding new TPieWedge items to
its collection list.

Earlier, I said that it is necessary
to override the abstract
TCollection.Update method to tell
TPiePieces what to do if a change is
made to an item in its collection.
TPiePieces.Update recalculates the

total of the TPieWedge values in case
the user changed a value or
added/removed a TPieWedge. It then
forces the TPieGraphic to repaint
itself by calling TPiePieces.
UpdatePiePieces which in turn calls
FPieGraphic.Refresh. The method
UpdatePiePieces was created to
give the component user a public
method to force a repaint of the pie
wedges.

The TCollection.Add method
creates and adds to its collection
list a TCollectionItem descendant.
Instead of returning a reference to
a TPieWedge, however, it returns a
reference to the TCollectionItem
base class. Internally, TCollection
knows to create a TPieWedge be-
cause the type with which it is
associated is passed to its con-
structor and it uses this informa-
tion to create the correct
TCollectionItem descendant type.
However, its Add function cannot
know which type to return. There-
fore, I created an Add function spe-
cific to TPiePieces which calls the
inherited TCollection.Add method
and typecasts its return value to
the appropriate type. This just
means the user doesn’t have to
perform this intermediate step.

I also created a function called
TCollection.AddPiece which takes a
value and a color and adds a new
pie piece to the collection with the
specified property settings. This
gives the user a run-time method
with which to add new pieces.

Finally, I declared two proper-
ties: Items and Total. Total is a read
only property which returns the
value stored in FTotal – the total of
the pie wedge values. Items is the
default array property which al-
lows the user to access the collec-
tion items sequentially. The
GetItem and SetItem access meth-
ods call TCollection’s GetItem and
SetItem methods to retrieve and
set the specified TCollectionItem
instance.

The important thing to remem-
ber about your TCollection descen-
dant is that you’re making it aware
of your TCollectionItem descen-
dant. Since one of the primary
purposes of creating a collection is
to give the user a design-time
interface with which s/he can

42 The Delphi Magazine Issue 10

manipulate a collection of items, it
makes sense to create a compo-
nent of which the TCollection de-
scendant will become a property.
For the TPiePieces, this component
would be the TPieGraphic.

Defining The
Owner Component
TPieGraphic isn’t too complex, it’s
just a TGraphicControl descendant
which contains a TPiePieces prop-
erty. Its various methods make it so
that it knows how to assign pie
wedges to the PiePieces property
and also allow it to paint the pie
chart based on the pie wedge
values and colors.

The TPieGraphic.Create con-
structor instantiates the
TPiePieces collection instance,
FPiePieces, and sets its default
width and height. FPiePieces is ac-
cessed through the PiePieces prop-
erty. SetPiePieces is the write
access method for PiePieces. This
method replaces the TPiePieces pa-
rameter passed in to its TPiePieces
instance. TPieGraphic.Destroy sim-
ply frees the TPiePieces instance.
The TPieGraphic.AddPiece method
is just another interface function to
add another pie wedge to the
TPiePieces collection.

The main method of TPieGraphic
is its Paint method, which iterates
through the pie wedges and paints
them to the TPieGraphic.Canvas.
This is just a modified copy of the
TPie.Paint method which ships
with Borland’s examples, but mak-
ing use of the TPieWedge properties
to paint the wedges.

At this point, you can success-
fully use this component to draw a
pie graph. To add pie wedges to the
PiePieces property just execute the
TPieGraphic.AddPiece method as
shown below, resulting in the
output shown in Figure 1.

PieGraphic1.AddPiece(
 10, clBlue);
PieGraphic1.AddPiece(
 20, clRed);
PieGraphic1.AddPiece(
 50, clPurple);

The real benefit to using the
TCollection and TCollectionItem is
that they can allow the user to

modify your collection of items at
design-time. These modifications
will then be stored along with the
form on which the component sits
and later restored when the user
reloads the form. Therefore, you
should give the user the ability to
edit the list of items at design-time
with a property editor.

Designing A Property Editor
I won’t go into the details of how to
design a property editor since that
is not the focus of this article.
Instead, I’ll discuss the specifics of
the TPiePiecesProperty property
editor and how it works with the
TPiePieces collection class. For an
excellent discussion on designing
property editors see the article
Under Construction: Property Editors
by Bob Swart in Issue 6, February
1996.

Notice in Listing 1 that we
included the units PieGrpe and
DsgnIntf in the uses statement.
DsgnIntf is where the base
property editor classes are de-
fined. PieGrpe is where the
TPiePiecesProperty editor is de-
fined – the property editor for the
TPiePieces class. Listing 2 (over the
page) shows PIEGRPE.PAS.

The property editor class,
TPiePiecesProperty, overrides
three methods. GetAttributes is
overriden to tell the Object
Inspector that this property will

invoke a dialog when edited. This
places the ellipsis button in the
Object Inspector for the PiePieces
property. the Edit method calls the
EditPiePieces function to which it
passes the TPiePieces property be-
ing edited. A reference to the actual
property can be obtained by using
the GetOrdValue function as shown
in the Edit procedure. The GetValue
function writes the class type of the
PiePieces value in the Object
Inspector.

It is the TPieGraphEditor dialog
where the editing of the TPiePieces
collection actually occurs. Figure 2
shows TPieGraphEditor.

The TPieGraphEditor dialog uses
an owner-draw TListBox to display
the TPieWedge values in their re-
spective colors. The user can add
and remove pie wedges and uses
the TEdit to specify the wedge
value and the TColorGrid to specify
the wedge color.

The TPieGraphEditor is invoked
from the EditPiePieces function.
This function instantiates the
dialog and assigns the TPiePieces
class passed to its private
TPieFields member, FPieFields,
which is used by TPieGraphEditor’s
methods to allow the user to mod-
ify the pie wedges. EditPiePieces
also instantiates an internal
TPieGraphic instance which it uses
as a backup to restore the original
pie wedge values in case the user

➤ Figure 1

June 1996 The Delphi Magazine 43

unit piegrpe;
interface
uses
 Windows, Messages, SysUtils, Classes, Graphics,
 Controls, Forms, Dialogs, PieGraf, DsgnIntF, TypInfo,
 StdCtrls, Mask, ColorGrd;
type
 TPieGraphEditor = class(TForm)
 Label1: TLabel;
 ValuesListBox: TListBox;
 Label2: TLabel;
 AddBtn: TButton;
 ColorGrid1: TColorGrid;
 Label3: TLabel;
 RemoveBtn: TButton;
 OkBtn: TButton;
 CancelBtn: TButton;
 NewValue: TEdit;
 procedure FormCreate(Sender: TObject);
 procedure FormDestroy(Sender: TObject);
 procedure ValuesListBoxDrawItem(Control:
 TWinControl; Index: Integer;
 Rect: TRect; State: TOwnerDrawState);
 procedure AddBtnClick(Sender: TObject);
 procedure RemoveBtnClick(Sender: TObject);
 procedure CancelBtnClick(Sender: TObject);
 procedure NewValueKeyPress(Sender: TObject;
 var Key: Char);
 private
 FPiePieces: TPiePieces;
 FPieGraphic: TPieGraphic; // Used as a Backup
 Modified: Boolean;
 procedure UpdateValuesListBox;
 end;
 { Now declare TPropertyEditor descendant and override
 the required methods }
 TPiePiecesProperty = class(TPropertyEditor)
 function GetAttributes: TPropertyAttributes;
 override;
 function GetValue: String ; override;
 procedure Edit; override;
 end;
{ This function will be called by the property editor’s
 Edit method }
function EditPiePieces(PiePieces: TPiePieces): Boolean;
var
 PieGraphEditor: TPieGraphEditor;

implementation
{$R *.DFM}

function IsCharNumeric(C: Char): Boolean;
var Code, V: Integer;
begin
 Val(C, V, Code);
 Result := Code = 0;
end;

function EditPiePieces(PiePieces: TPiePieces): Boolean;
begin
 with TPieGraphEditor.Create(Application) do begin
 try
 { Point to the actual TPiePieces collection }
 FPiePieces := PiePieces;
 { Copy TPiePieces to the backup FPieGraphic which
 will be used as a backup in case user cancels }
 FPieGraphic.PiePieces.Assign(PiePieces);
 { Draw the listbox with list of TPiePieces Values }
 UpdateValuesListBox;
 ShowModal; // Display the form
 Result := Modified;
 finally
 Free;
 end;
 end;
end;

{ TPieGraphEditor }
procedure TPieGraphEditor.UpdateValuesListBox;
var i: Integer;
begin
 ValuesListBox.Clear; // First clear the list box
 for i := 0 to FPiePieces.Count - 1 do
 with FPiePieces[i] do
 ValuesListBox.Items.AddObject(IntToStr(WedgeValue),

 Pointer(Color));
end;

procedure TPieGraphEditor.FormCreate(Sender: TObject);
begin
 FPieGraphic := TPieGraphic.Create(self);
end;

procedure TPieGraphEditor.FormDestroy(Sender: TObject);
begin
 FPieGraphic.Free;
end;

procedure TPieGraphEditor.ValuesListBoxDrawItem(
 Control: TWinControl; Index: Integer; Rect: TRect;
 State: TOwnerDrawState);
{ Uses an owner-draw list box to draw the TPieWedge
 values in their specified color }
begin
 with ValuesListBox do begin
 Canvas.FillRect(Rect);
 Canvas.Font.Color := TColor(Items.Objects[Index]);
 DrawText(Canvas.Handle, PChar(Items[Index]),
 Length(Items[Index]), Rect, dt_Left or dt_VCenter);
 end;
end;

procedure TPieGraphEditor.AddBtnClick(Sender: TObject);
var
 PieWedge: TPieWedge;
begin
 if StrToInt(NewValue.Text) > 0 then begin
 ValuesListBox.Items.Add(NewValue.Text);
 ValuesListBox.Refresh;
 PieWedge :=
 FPiePieces.AddPiece(StrToInt(NewValue.Text),
 ColorGrid1.ForegroundColor);
 Modified := True;
 end;
end;

procedure TPieGraphEditor.RemoveBtnClick(Sender:
 TObject);
var i: integer;
begin
 i := ValuesListBox.ItemIndex;
 if i >= 0 then begin
 { Remove the item from the listbox }
 ValuesListBox.Items.Delete(i);
 { Remove the item from the collection }
 FPiePieces[i].Free;
 Modified := True;
 end;
end;

procedure TPieGraphEditor.CancelBtnClick(Sender:
 TObject);
begin
 FPiePieces.Assign(FPieGraphic.PiePieces);
 Modified := False;
 ModalResult := mrCancel;
end;

procedure TPieGraphEditor.NewValueKeyPress(Sender:
 TObject; var Key: Char);
begin
 if not IsCharNumeric(Key) then Key := #0;
end;

{ TPiePiecesProperty }
function TPiePiecesProperty.GetAttributes:
 TPropertyAttributes;
begin
 Result := [paDialog];
end;

procedure TPiePiecesProperty.Edit;
begin
 if EditPiePieces(TPiePieces(GetOrdValue)) then begin
 Modified;
 end;
 TPiePieces(GetOrdValue).UpdatePiePieces;
end;

function TPiePiecesProperty.GetValue: String;
begin
 Result := Format(’(%s)’, [GetPropType^.Name]);
end;
end.

➤ Listing 2 For additional commenting see file PIEGRPE.PAS on the disk

44 The Delphi Magazine Issue 10

cancels the edit operation. By the
way, another approach you may
consider is to have the user edit the
internal pie wedge values and then
copy them to the actual property
only when the user clicks the Ok
button, or you can also place an
Apply button on the form.

After creating the internal
TPieGraphic instance, the method
UpdateValuesListBox is called,

➤ Figure 2

which adds the pie wedge values
and colors to the ValuesListBox.
Finally, the form is shown modally
and the user can then edit the
TPiePieces. The AddBtnClick adds a
new TPieWedge instance to the
FPiePieces field. Remember,
FPiePieces refers to the actual
property being edited.
RemoveBtnClick removes the
selected TPieWedge instance. Both

AddBtnClick and RemoveBtnClick
ensure that ValuesListBox reflects
the changes made.

Conclusion
That’s all there is to using the
TCollection and TCollectionItem
classes to create and manage a
collection of items that can be ma-
nipulated and saved at design-time
in Delphi. Although it seems that
there are several steps to take,
these are the same steps you would
take when designing just about any
collection of items.

Xavier Pacheco is a Field Consult-
ing Engineer with Borland
International and co-author of the
upcoming book Delphi 2.0
Developer’s Guide from Sams
publishing. Xavier can be reached
at xpacheco@wpo.borland.com or
on Compuserve at 76711,666

June 1996 The Delphi Magazine 45

	Defining the TCollectionItem Descendant
	Defining the TCollection Descendant
	Defining the Owner Component
	Designing a Property Editor
	Conclusion

